skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jiazi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    This paper studies the vulnerability of large-scale power systems to false data injection (FDI) attacks through their physical consequences. An attacker-defender bi-level linear program (ADBLP) can be used to determine the worst-case consequences of FDI attacks aiming to maximize the physical power flow on a target line. This ADBLP can be transformed into a single-level mixed-integer linear program (MILP), but it is numerically intractable for power systems with a large number of buses and branches. In this paper, a modified Benders' decomposition algorithm is proposed to solve the ADBLP on large power systems without converting it to the MILP. Of more general interest, the proposed algorithm can be used to solve any ADBLP. Vulnerability of the IEEE 118-bus system and the Polish system with 2383 buses to FDI attacks is assessed using the proposed algorithm. 
    more » « less